Development of a Fluorescent Reporter System to Delineate Cancer Stem Cells in Triple-Negative Breast Cancer.

2015 
Advanced cancers display cellular heterogeneity driven by self-renewing, tumorigenic cancer stem cells (CSCs). The use of cell lines to model CSCs is challenging due to the difficulty of identifying and isolating cell populations that possess differences in self-renewal and tumor initiation. To overcome these barriers in triple-negative breast cancer (TNBC), we developed a CSC system utilizing a green fluorescence protein (GFP) reporter for the promoter of the well-established pluripotency gene NANOG. NANOG-GFP+ cells gave rise to both GFP+ and GFP− cells, and GFP+ cells possessed increased levels of the embryonic stem cell transcription factors NANOG, SOX2 and OCT4 and elevated self-renewal and tumor initiation capacities. GFP+ cells also expressed mesenchymal markers and demonstrated increased invasion. Compared with the well-established CSC markers CD24−/CD44+, CD49f and aldehyde dehydrogenase (ALDH) activity, our NANOG-GFP reporter system demonstrated increased enrichment for CSCs. To explore the utility of this system as a screening platform, we performed a flow cytometry screen that confirmed increased CSC marker expression in the GFP+ population and identified new cell surface markers elevated in TNBC CSCs, including junctional adhesion molecule-A (JAM-A). JAM-A was highly expressed in GFP+ cells and patient-derived xenograft ALDH+ CSCs compared with the GFP− and ALDH− cells, respectively. Depletion of JAM-A compromised self-renewal, whereas JAM-A overexpression rescued self-renewal in GFP− cells. Our data indicate that we have defined and developed a robust system to monitor differences between CSCs and non-CSCs in TNBC that can be used to identify CSC-specific targets for the development of future therapeutic strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    49
    Citations
    NaN
    KQI
    []