Passive stiffness of isolated cardiac and skeletal myocytes in the hamster.
1984
Single cardiac myocytes and skeletal myocyte fragments, devoid of interstitial collagen but with intact glycocalyx, were prepared by mechanical disaggregation of hamster ventricular myocardium and caudal gracilis muscle, respectively. Passive stiffness was studied by examining the sarcomere length-tension relationship over the approximate Eulerian stress range of 0-20 mN/mm2 for cardiac myocytes and 0-120 mN/mm2 for skeletal myocytes. Creep and stress-relaxation became apparent only when cells were stretched to sarcomere lengths close to, or exceeding, 2.2 micron for the cardiac myocytes, and 2.7 micron for the skeletal myocytes. Stress-relaxation and creep occurred simultaneously, suggesting that the sarcomere is at least one of the structural components responsible for viscoelasticity. The differential strain stiffness constant was calculated from the regression of natural stress [Ln(mN/mm2)] against differential strain [(L-Lo)/Lo] and found to be 7.48 +/- 1.73 for the ventricular myocytes and 5.77 +/- ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI