Naloxone Protects against Lipopolysaccharide-Induced Neuroinflammation and Microglial Activation via Inhibiting ATP-Sensitive Potassium Channel.

2021 
Aim The aim of this study was to evaluate the anti-inflammatory effects and underlying mechanism of naloxone on lipopolysaccharide- (LPS-) induced neuronal inflammation and microglial activation. Methods LPS-treated microglial BV-2 cells and mice were used to investigate the anti-inflammatory effects of naloxone. Results The results showed that naloxone dose-dependently promoted cell proliferation in LPS-induced BV-2 cells, downregulated the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and proinflammatory enzymes iNOS and COX-2 as well as the expression of free radical molecule NO, and reduced the expression of Iba-1-positive microglia in LPS-stimulated BV-2 cells and mouse brain. Moreover, naloxone improved LPS-induced behavior degeneration in mice. Mechanically, naloxone inhibited LPS-induced activation in the ATP-sensitive potassium (KATP) channel. However, the presence of glibenclamide (Glib), an antagonist of KATP channel, ameliorated the suppressive effects of naloxone on inflammation and microglial activation. Conclusion Naloxone prevented LPS-induced neuroinflammation and microglial activation partially through the KATP channel. These findings might highlight the potential of naloxone in neuroinflammation therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []