Single dopant atom lithography for the fabrication of quantum computers and low power electronic devices

2021 
In this paper, we describe approaches for the fabrication of single atom devices and spin-based qubits for quantum computing. Addressing of single dopant atoms has the potential to enable precise tunable control over all key electronic properties of basic devices needed for solid-state quantum computing. A new challenge which arises for a variety of qubits is the ability to locate deterministically individual atoms below the surface of the three-dimensional structure to build single or few-atom atom transistors single electron transistors, or diverse quantum sensing devices. Comprehensive applications can be considered for complex donor/acceptor arrangements and this kind of dopant engineering technique has the character of a lithographic method. Scanning Probe Methods are used not only for surface analysis and nanofabrication. We demonstrated in 2004 an integration of a scanning probe with an ion beam similar to the use of a “high resolution dynamic nano-stencil” which enabled the nondestructive imaging of a target together with alignment of an ion beam to device features with a few nanometer accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []