Bending and buckling of inflatable beams : Some new theoretical results
2005
The non-linear and linearized equations are derived for the in-plane stretching and bending of thin-walled cylindrical beams made of a membrane and inflated by an internal pressure. The Timoshenko beam model combined with the finite rotation kinematics enables one to correctly account for the shear effect and all the non-linear terms in the governing equations. The linearization is carried out around a pre-stressed reference configuration which has to be defined as opposed to the so-called natural state. Two examples are then investigated: the bending and the buckling of a cantilever beam. Their analytical solutions show that the inflation has the effect of increasing the material properties in the beam solution. This solution is compared with the three-dimensional finite element analysis, as well as the so-called wrinkling pressure for the bent beam and the crushing force for the buckled beam. New theoretical and numerical results on the buckling of inflatable beams are displayed.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
7
References
74
Citations
NaN
KQI