Reduced interhemispheric and increased intrahemispheric connectivity in schizophrenia brain networks

2019 
Introduction: Brain connectivity is disturbed in schizophrenia, both during resting state and during active tasks. Schizophrenia is characterised by a corpus callosum pathology and an inability to suppress overstimulation, both of which relate to this disturbed connectivity. We wanted to verify whether network analysis on EEG sensor level can reveal the corpus callosum pathology in schizophrenia. Methods: We measured 62-channel EEG on 46 schizophrenia patients and 43 healthy controls during eyes-closed and eyes-open resting-state, mismatch negativity and visual and auditory oddball. We assessed connectivity through correlation, coherence and directed transfer function (DTF) in the delta, theta, alpha, low- and high beta bands. Results: The coherence and the DTF picked up a consistent pattern of reduced interhemispheric and enhanced intrahemispheric connectivity strength in schizophrenia in the alpha and beta band. This disturbance pattern appeared across all paradigms in the parietal and the occipital region and was generally more pronounced in the right hemisphere. Conclusions: This is the first study to use multiple similarity measures and different tasks to confirm disturbed brain connectivity on EEG sensor level. We hypothesise that the interhemispheric reductions reflect transcallosal disconnection, while the intrahemispheric increases indicate the inability to suppress the response to stimuli.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []