基于 PCA 特征融合与 LDA 分类的实木地板纹理判别方法
2014
纹理一致性影响着实木地板档次,针对目前实木地板纹理分类速度慢、精度低的问题,提出一种适合区分直纹、抛物纹、乱纹3类纹理的在线检测方法。方法首先对纹理图像进行缩小,运用视觉心理学的Tamura方法提取粗糙度、对比度、方向度、线性度、规整度、粗略度等6个纹理特征;同时在原图像提取反映图像全局信息的灰度均值、方差、熵等3个统计量;然后,运用主成分分析法(PcA)对3类纹理9个特征进行降维融合操作;最后,采用线性判别分析方法(LDA)构建3类纹理的辨识模型。采用200幅实木地板纹理图像进行实验,当主成分个数为7时,分类正确率稳定达到85%,较传统Tamura方法的83%和全局基本统计量的70%有所提高;特征提取时间为0.5548S,比缩小前图像的Tamura特征提取时间55.7000S明显减低,而分类正确率没有明显变化。
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI