Correlations Between the Physiochemical Characteristics of Plant Fibres and Their Mechanical Properties

2016 
Lignocellulosic fibres harvested from different plant types exhibit variations in mechanical properties that are associated with their chemical composition and physical features. This diversity indicates that plant fibres could be selected based on their physio-chemical properties for tailored applications such as enhanced vibration damping. In this study, bast, leaf, and mesocarp fibre bundles were investigated to understand correlations between their physiochemical characteristics and their mechanical properties with a particular focus on their vibrational damping ability. Due to the interrelations between the investigated variables such as cellulose content and microfibril angle, a multivariate analysis (principal component analysis) was applied to elucidate trends. The stiffness and strength of the fibre bundles were found to be positively correlated to high cellulose content and low microfibril angle while high toughness was correlated with fibre bundles of high lignin content and high microfibril angle. Conversely, the damping coefficient was found to be positively correlated to fibres containing high level of hemicelluloses, such as those extracted from leafy plants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    5
    Citations
    NaN
    KQI
    []