Self-organizing neurons: toward brain-inspired unsupervised learning

2019 
During the last years, Deep Neural Networks have reached the highest performances in image classification. Nevertheless, such a success is mostly based on supervised and off-line learning: they require thus huge labeled datasets for learning, and once it is done, they cannot adapt to any change in the data from the environment. In the context of brain-inspired computing, we apply Kohonen-based Self-Organizing Maps for unsupervised learning without labels, and we explore original extensions such as the Dynamic SOM that enables continuous learning and the Pruning Cellular SOM that includes synaptic pruning in neuromorphic circuits. After presenting the three models and the experimental setup for MNIST classification, we compare different methods for automatic labeling based on very few labeled data (1% of the training dataset), and then we compare the performances of the three Kohonen-based SelfOrganizing Maps with STDP-based Spiking Neural Networks in terms of accuracy, dynamicity and scalability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    8
    Citations
    NaN
    KQI
    []