Paulinella micropora KR01 holobiont genome assembly for studying primary plastid evolution

2019 
The widespread algal and plant (Archaeplastida) plastid originated >1 billion years ago, therefore relatively little can be learned about plastid integration during the initial stages of primary endosymbiosis by studying these highly derived species. Here we focused on a unique model for endosymbiosis research, the photosynthetic amoeba Paulinella micropora KR01 (Rhizaria) that underwent a more recent independent primary endosymbiosis about 124 Mya. A total of 149 Gbp of PacBio and 19 Gbp of Illumina data were used to generate the draft assembly that comprises 7,048 contigs with N50=143,028 bp and a total length of 707 Mbp. Genome GC-content was 44% with 76% repetitive sequences. We predicted 32,358 genes that contain 73% of the complete, conserved genes in the BUSCO database. The mean intron length was 882 bp, which is significantly greater than in other Rhizaria (86~184 bp). Symbiotic bacteria from the culture were isolated and completed genomes were generated from three species (Mesorhizobium amorphae Pch-S, Methylibium petroeiphilum Pch-M, Polaromonas sp. Pch-P) with one draft genome (Pimelobacter simplex Pch-N). Our holobiont data establish P. micropora KR01 as a model for studying plastid integration and the role of bacterial symbionts in Paulinella biology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []