An evolutionary algorithm approach for the constrained multi-depot vehicle routing problem

2016 
Purpose – The purpose of this paper is to explore a real world vehicle routing problem (VRP) that has multi-depot subcontractors with a heterogeneous fleet of vehicles that are available to pickup/deliver jobs with varying time windows and locations. Both the overall job completion time and number of drivers utilized are analyzed for the automated job allocations and manual job assignments from transportation field experts. Design/methodology/approach – A nested genetic algorithm (GA) is used to automate the job allocation process and minimize the overall time to deliver all jobs, while utilizing the fewest number of drivers – as a secondary objective. Findings – Three different real world data sets were used to compare the results of the GA vs transportation field experts’ manual assignments. The job assignments from the GA improved the overall job completion time in 100 percent (30/30) of the cases and maintained the same or fewer drivers as BS Logistics (BSL) in 47 percent (14/30) of the cases. Origina...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    7
    Citations
    NaN
    KQI
    []