Time Efficient Federated Learning with Semi-asynchronous Communication

2020 
With the explosive growth of massive data generated by smart Internet of Things (IoT) devices, federated learning has been envisioned as a promising technique to provide distributed machine learning services while protecting training data privacy. However, conventional federated learning protocols have shown significant drawbacks in regards of efficiency and scalability. First, since the synchronous communication model of federated learning and the computation capability of each device is different, the straggled users could severely desegregate the efficiency. Second, in synchronous communication, there is no effective client selection mechanism to make the model perform better in the early stage. Third, how to coordinate the communication of various nodes to accelerate global convergence is also one of the issues that need to be considered. To solve the above-mentioned problems, we propose a semi-asynchronous federated learning mechanism where a data expansion method is used to effectively reduce the stragglers existing in both synchronous and asynchronous communication models. Moreover, we also designed a priority function to make the accuracy increase rapidly in the early stage. Experimental results demonstrate that our proposed method have higher accuracy and faster convergence time compared with existing synchronization methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []