Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions.

2021 
Abstract Enhanced soil organic matter (SOM) decomposition and organic phosphorus (P) cycling may help sustain plant productivity under elevated CO2 (eCO2) and P-limiting conditions. P-acquisition by arbuscular mycorrhizal (AM) fungi and their impacts on SOM decomposition may become even more relevant in these conditions. Yet, experimental evidence of the interactive effect of AM fungi and P availability influencing altered SOM cycling under eCO2 is scarce and the mechanisms of this control are poorly understood. Here, we performed a pot experiment manipulating P availability, AM fungal presence and atmospheric CO2 levels and assessed their impacts on soil C cycling and plant growth. Plants were grown in chambers with a continuous 13C-input that allowed differentiation between plant- and SOM-derived fractions of respired CO2 (R), dissolved organic C (DOC) and microbial biomass (MBC) as relevant C pools in the soil C cycle. We hypothesised that under low P availability, increases in SOM cycling may support sustained plant growth under eCO2 and that AM fungi would intensify this effect. We found the impacts of CO2 enrichment and P availability on soil C cycling were generally independent of each other with higher root biomass and slight increases in soil C cycling under eCO2 occurring regardless of the P treatment. Contrary to our hypotheses, soil C cycling was enhanced with P addition suggesting that low P conditions were limiting soil C cycling. eCO2 conditions increased the fraction of SOM-derived DOC pointing to increased SOM decomposition with eCO2. Finally, AM fungi increased microbial biomass under eCO2 conditions and low-P without enhanced soil C cycling, probably due to competitive interactions with free-living microorganisms over nutrients. Our findings in this plant-soil system suggest that, contrary to what has been reported for N-limited systems, the impacts of eCO2 and P availability on soil C cycling are independent of each other.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []