Revisiting the association of HLA alleles and haplotypes with CYP21A2 mutations in a large cohort of patients with congenital adrenal hyperplasia

2019 
Abstract The CYP21A2 gene encoding 21‑hydroxylase is on chromosome 6p21.3 within the human leukocyte antigen (HLA) class III major histocompatibility complex and an association between congenital adrenal hyperplasia (CAH) due to 21‑hydroxylase deficiency and HLA class I and II alleles has been shown in genetically isolated populations. One-third of CAH causing alleles are 30-kb deletions due to homologous recombination events between active and pseudogenes resulting in chimeric genes. The aim of this study was to re-visit the association between the CYP21A2 variants and HLA polymorphisms in a large ethnically diverse cohort of patients with CAH who underwent comprehensive CYP21A2 genotyping, including specification of chimeric gene subtypes (CAH CH-1 through CH-9 of CYP21A1P/CYP21A2 chimeras; CAH-X CH-1 through CH-3 of TNXA/TNXB chimeras) in alleles with 30-kb deletions. The study population included 201 patients (86 males, 115 females, age 3–75 years) with CAH due to 21‑hydroxylase deficiency (159 classic, 42 nonclassic) and 194 parents. Based on the availability of parental genotype, we determined the haplotypes of CYP21A2 mutations and HLA types in 95 probands (190 alleles). Five prevalent haplotype associations were found: p.V281L and B*14-C*08 ( P P  = 0.035); and of the chimeric genes caused by 30-kb deletions: CH-1 and A*03 ( P  = 0.033); CH-5 and C*06-DRB1*07 ( P P  = 0.004). Our findings show that a number of associations between HLA alleles and haplotypes and CYP21A2 mutations, including large 30-kb deletions, exist commonly across ethnicities. These HLA associations may have clinical implications for patients with CAH and may provide insight into the genetics of this highly complex region of the human genome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    1
    Citations
    NaN
    KQI
    []