The crossover function of MutSγ is activated via Cdc7-dependent stabilization of Msh4

2018 
The MutSγ complex, Msh4-Msh5, binds DNA joint-molecule (JM) intermediates during homologous recombination to promote crossing over and accurate chromosome segregation at the first division of meiosis. MutSγ facilitates the formation and biased resolution of crossover-specific JM intermediates called double Holliday junctions. Here we show that these activities are governed by regulated proteasomal degradation. MutSγ is initially inactive for crossing over due to an N-terminal degron on Msh4 that renders it unstable. Activation of MutSγ requires the Dbf4-dependent kinase, Cdc7 (DDK), which directly phosphorylates and thereby neutralizes the Msh4 degron. Phosphorylated Msh4 is chromatin bound and requires DNA strand exchange and chromosome synapsis, implying that DDK specifically targets MutSγ that has already bound nascent JMs. Our study establishes regulated protein degradation as a fundamental mechanism underlying meiotic crossover control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    124
    References
    3
    Citations
    NaN
    KQI
    []