Effect of mixed solvents on polyelectrolyte complexes with salt
2020
Strongly interacting polyelectrolyte complexes (PECs) are a versatile class of materials whose physical states can be driven from solids into liquids and ultimately into homogenous solution upon salt addition. However, many of these materials can display high stability using common monovalent salts, leading to difficulties in accessing the entire PEC spectrum. Here, the model system, composed of two styrenic polyelectrolytes, required exceptionally high salt to drive phase transition. We term the amount of salt required to drive these transitions salt resistance. In water, the PEC transferred from solid into liquid at 2.5 M NaBr and never fully dissociated within the studied salt range. We discovered an unconventional approach of weakening salt resistance by switching the solvent to miscible ethylene glycol/water and ethanol/water, allowing us to systematically introduce more hydrophobic constituents. Employing microscopy to determine physical states qualitatively, we found that higher hydrophobicity lowered salt resistance for phase transition and disassembly.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
10
Citations
NaN
KQI