Altered fatty acid composition in the plasma, platelets, and aorta of the streptozotocin-induced diabetic rat.

1988 
Abstract Decreased arachidonate levels have been described in various tissues of the streptozotocin-induced diabetic rat. However, reported arachidonate changes in platelets from diabetic patients have been variable. In this communication, we describe experiments that indicate that in the short-term streptozotocin diabetic rat (2 to 3 weeks), the fatty acid composition of plasma and red blood cell lipids was altered but remained unchanged in platelet and aorta phospholipids. The altered fatty acid composition of the diabetic red blood cells and plasma cholesterol esters and phospholipids was similar to that previously found in the diabetic liver. However, in long-term diabetes (6 weeks), the phospholipid fatty acid composition of the platelet and aorta became significantly altered. Thus, in the 6-week diabetic platelet, there were increases of linoleate, dihomo-γ-linolenate, docosapentaenoate (C22:5n-3), and docosahexaenoate, and decreases of oleate, arachidonate, and docosatetraenoate. In the aorta, there were increases of linoleate, eicosapentaenoate, and docosahexaenoate, and decreases of arachidonate, docosatetraenoate, and docosapentaenoate (C22:5n-6). Results from these experiments indicate that the fatty acid composition of plasma and red blood cell lipids was altered in short-term diabetes (2 to 3 weeks), but that of platelet and aorta phospholipids was not changed until more prolonged diabetes was present. Insulin treatment of the diabetic rat increased the levels of palmitoleate and oleate and decreased the levels of linoleate in platelet and aorta lipids from insulin-treated diabetic rats, suggesting an overcorrection of diminished Δ 9 and Δ 6 fatty acid desaturation as compared with the nondiabetic control. However, such short-term insulin treatment of the diabetic rat may not correct the persumed depressed Δ 5 desaturase activity, since dihomo-γ-linolenate was further increased and arachidonate further decreased in platelet and aorta phospholipids following insulin treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    44
    Citations
    NaN
    KQI
    []