Visualization of Driving Behavior Based on Hidden Feature Extraction by Using Deep Learning

2017 
In this paper, we propose a visualization method for driving behavior that helps people to recognize distinctive driving behavior patterns in continuous driving behavior data. Driving behavior can be measured using various types of sensors connected to a control area network. The measured multi-dimensional time series data are called driving behavior data. In many cases, each dimension of the time series data is not independent of each other in a statistical sense. For example, accelerator opening rate and longitudinal acceleration are mutually dependent. We hypothesize that only a small number of hidden features that are essential for driving behavior are generating the multivariate driving behavior data. Thus, extracting essential hidden features from measured redundant driving behavior data is a problem to be solved to develop an effective visualization method for driving behavior. In this paper, we propose using deep sparse autoencoder (DSAE) to extract hidden features for visualization of driving behavior. Based on the DSAE, we propose a visualization method called a driving color map by mapping the extracted 3-D hidden feature to the red green blue (RGB) color space. A driving color map is produced by placing the colors in the corresponding positions on the map. The subjective experiment shows that feature extraction method based on the DSAE is effective for visualization. In addition, its performance is also evaluated numerically by using pattern recognition method. We also provide examples of applications that use driving color maps in practical problems. In summary, it is shown the driving color map based on DSAE facilitates better visualization of driving behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    84
    Citations
    NaN
    KQI
    []