Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland.

2006 
The plasma membrane of cells from rat submandibular glands was isolated and extensively sonicated. The homogenate was centrifuged at high speed in a discontinuous sucrose gradient. Light fractions contained vesicles analogous to rafts: they were: rich in cholesterol, they contained GM1 and caveolin-1, and P2X 7 receptors were detected in these fractions. The location of the P2X 7 receptors in rafts was abolished when cellular cholesterol was removed by methyl-β-cyclodextrin (MCD). ATP activated neutral sphingomyelinase (N-SMase), which provoked a decrease of the cellular content of sphingomyelin and an increase of ceramide levels in these cells and in the rafts. Treatment with MCD and filipin (but not with α-cyclodextrin) abolished the increase of the intracellular concentration of calcium ([Ca 2+ ] i ) in response to epinephrine but not to ATP. MCD and filipin also inhibited the activation by ATP of phospholipase A 2 (PLA 2 ). Inhibition of N-SMase with glutathione or GW4869 prevented the activation of PLA 2 by P2X 7 agonists without affecting [Ca 2+ ]; levels-BB We conclude that P2X 7 receptors; are present in both raft and nonraft compartments of plasma membranes; the receptors forming a nonselective cation channel are located in the nonraft fraction. P2X 7 receptors in the rafts are coupled to the activation of N-SMase, which increases the content of ceramides in rafts. This may contribute to the activation of PLA 2 in response to P2X 7 receptor occupancy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    47
    Citations
    NaN
    KQI
    []