Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe(3+) ions in water samples.

2017 
Abstract This work reports a facile electrolyzing method to synthesize boron-doped graphene quantum dots (BGQDs) and uses the BGQDs as a fluorescent probe to determine Fe 3+ ion levels in water samples. The BGQDs were produced by oxidizing graphite in an aqueous borax solution at pH 7; then, the borate solution was filtered with BGQDs, and the borate was dialyzed from the filtrate, leaving a solution of BGQDs in water. The amount of the B in the BGQDs can be adjusted by changing the concentration of borax used for the electrolyte. The excitation wavelength- and B amount-dependent fluorescence characteristics of BQGDs were studied. The fluorescence intensity of the BGQDs is measurable in real time, and its quenching is very sensitive to the concentration of Fe 3+ ions in the system but not to other possible coexisting metal ions. The fluorescence quenching mechanism of Fe 3+ ions to BGQDs is studied and explained based on electrochemical voltammetry and DFT simulations. The analytical signal, which is defined as F 0 / F , where F 0 and F are the fluorescence intensities of the BGQDs before and after interaction with Fe 3+ ions, respectively, displays a good linear relationship in the Fe 3+ ion concentration range of 0.01–100 µm with a correlation coefficient of 0.999 and a limit of detection (LOD) of ~(0.005±0.001) μM. The LOD value is much lower than the water quality standards for Fe 3+ ions (0.3 ppm, ~5.36 µm) in drinking water suggested by the WHO (World Health Organization) and EPA (U.S. Environmental Protection Agency), implying that this method has great potential for applications in real sample assays. For example, the determination of the Fe 3+ ion levels in three water samples (tap water, groundwater, and lake water) gives approximately the same results as those determined by the EPA-recommended AAS (atomic adsorption spectroscopy) method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    52
    Citations
    NaN
    KQI
    []