Antioxidant enzyme responses to salinity stress of Jatropha curcas and J. cinerea at seedling stage

2014 
The salt-sensitive humid tropical biodiesel crop, Jatropha curcas, was subjected to a 28-day exposure to salinity (0, 50, 100, and 200 mM NaCl), and activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), the rate of lipid peroxidation, stomatal conductance, mineral contents, and chlorophyll (Chl) content were compared to corresponding characteristics of J. cinerea, a related wild species of saline-dry areas. Biomass production decreased under the influence of 50 mM NaCl in both species, and the reduction was larger in J. curcas than in J. cinerea at the higher NaCl concentrations. In both species, stomatal conductance and transpiration decreased, leaf temperature and Na+ concentration increased under salt treatment; salinity effect was stronger in J. curcas. Chl degradation was enhanced only in J. curcas. In both Jatropha species, SOD, CAT, and POX activities increased with salinity. J. curcas showed the higher antioxidant activity than J. cinerea. Lipid peroxidation was observed only in J. curcas at concentrations above 100 mM NaCl, partially due to a greater reduction in stomatal conductance and/or the poor ROS-scavenging system. Thus, J. cinerea had more favorable characteristics to adapt to saline environments, and young J. curcas plants could adapt to salt-affected land if soil salinity was moderate (about 50 mM NaCl in solution).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    15
    Citations
    NaN
    KQI
    []