머신러닝을 이용한 신경계통의 질환 퇴원환자의 중증도 보정 재원일수 예측 모형 개발
2019
본 연구는 머신러닝을 이용하여 동반상병 보정 방법에 따른 중증도 보정 재원일수 예측 모형을 개발하고 이를 평가하여 중증도 보정 재원일수 예측 모형 개발의 알고리즘을 제시하기 위해 수행되었다. 본 연구를 위해 2006년부터 2015년까지 10년간의 질병관리본부 퇴원손상심층조사 자료를 수집하였으며, 재원일수 관리가 시급한 신경계통의 질환을 대상으로 중증도 보정 재원일수 예측 모형을 개발하였다. 신경계통의 질환 퇴원환자의 중증도 보정 재원일수 예측 모형 개발 시 동반상병 보정 방법은 CCI, ECI, CCS 진단군 분류 기준 등 3가지, 머신러닝 분석기법으로는 회귀분석, 의사결정나무, 랜덤포레스트, 서포트 백터 회귀분석, 신경망 등 5가지를 적용하여 모형을 개발하고 개발된 모형을 평가하였다. 모형 평가 결과 CCS 진단군 분류 기준 동반상병 보정 방법 및 신경망을 이용하여 개발한 중증도 보정 예측 모형의 모형 설명력(R-square)이 가장 높았으며, 모형의 예측력이 가장 우수한 것으로 나타났다. 따라서 중증도 보정 재원일수 예측모형 개발 시 CCS 진단군 분류 변수를 이용한 동반상병 보정 방법을 이용하여 중증도 보정 예측 모형을 개발하는 것이 필요하며, 머신러닝의 다양한 분석 기법 등을 이용하여 예측력 높은 중증도 보정 예측 모형을 개발하여 재원일수 변이요인 파악 등 재원일수 관리를 위해 활용하는 것이 필요하다.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI