Bandit-Based Power Control in Full-Duplex Cooperative Relay Networks

2021 
Full-duplex relaying is an enabling technique of sixth generation (6G) mobile networks, promising tremendous rate and spectral efficiency gains. In order to improve the performance of full-duplex communications, power control is a viable way of avoiding excessive loop interference at the relay. Unfortunately, power control requires channel state information of both source-relay and relay-destination channels, as well as of the loop interference channel, thus resulting in increased overheads. Aiming to offer a low-complexity alternative for power control in full-duplex relay networks, we adopt reward-based learning in the sense of multi-armed bandits. More specifically, we provide bandit-based power control algorithms, relying on acknowledgements/negative-acknowledgements observations by the relay. The proposed algorithms avoid the need for channel state information acquisition and exchange, and can be employed in a distributed manner. Performance evaluation results in terms of outage probability, average throughput and accumulated regret over time highlight an interesting performance-complexity trade-off compared to optimal power control with full channel knowledge and significant performance gains over the cases without power control and random power level selection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []