Structural and Electronic Properties of Pt13 Nanoclusters on Amorphous Silica Supports

2015 
An accurate description of metal nanoparticle (NP)–support interactions is required for designing and optimizing NP catalytic systems because NP–support interactions may significantly impact NP stability and properties, such as catalytic activity. The ability to calculate NP interactions with amorphous supports, which are commonly used in industrial practice, is hampered because of a general lack of accurate atomically detailed model structures of amorphous surfaces. We have systematically studied relaxation processes of Pt13 NPs on amorphous silica using recently developed realistic model amorphous silica surfaces. We have modeled the NP relaxation process in multiple steps: hard-sphere interactions were first used to generate initial placement of NPs on amorphous surfaces, then Pt–silica bonds were allowed to form, and finally both the NP and substrate were relaxed with density functional theory calculations. We find that the amorphous silica surface significantly impacts the morphology and electronic s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    26
    Citations
    NaN
    KQI
    []