The Application of a Complex Composite Fractal Interpolation Algorithm in the Seabed Terrain Simulation

2018 
Seabed terrain modelling is one of the key technologies in the Subsea Environmental Information System, and this system is critical for underwater vehicle path planning. A composite fractal interpolation algorithm based on improved fractional Brownian motion (FBM) and an improved iterative function system (IFS) is proposed in this paper to increase the precision of the seabed terrain model for submarine topography and to account for the complexity and irregularity of fractal properties in each region. The MATLAB simulation experiment showed that fractal properties of the model built by the complex composite fractal interpolation algorithm were closer to real surface features. After calculation analysis, the model built by the complex composite fractal interpolation algorithm, when compared with the model built by the traditional interpolation algorithm or by the single fractal interpolation algorithm, had higher precision and was more suitable for path planning for underwater vehicles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    3
    Citations
    NaN
    KQI
    []