Production-oriented design of electric traction drives with hairpin winding

2021 
Abstract In recent years, the manufacturing of stators by hairpin technology has proven its ability to fulfill the requirements on quality, productivity and robustness of traction drive applications in automotive industry. However, the uncertainty and necessity of rapid product development despite fuzzy target systems still cause that processes, machines and equipment – as well as the electric design – are often in an imperfect prototype stage at the start of production ramp-up. Due to the complex interdependencies between the stator components in combination with a high sensitivity of the overall process reliability to minor adjustments of stator design features, possible production-related weaknesses in design are often recognized first in the prototype stage of the production system. In order to reduce the economic risk resulting from these volatile technological conditions, production-oriented design based on numerical simulation methods can be applied from the beginning of product development. Therefore, several techniques for numerical process modeling are presented in this paper as possibilities to consider manufacturing constraints in an early stage of product development. For this purpose, the influence of wire dimensions on the forming process of hairpin coils is investigated using the example of rotary bending as well as the twisting process of a full stator by finite element simulations. Furthermore, a numerical approach to investigate the influence of heat input during laser welding of hairpin coils on the required stripping length is introduced.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []