Common genetic risk variants identified in the SPARK cohort implicate DDHD2 as a novel autism risk gene
2020
Background: Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of three common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) using the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD.
Methods: We performed an association study on 6,222 case-pseudocontrol pairs from SPARK and meta-analyzed with a previous GWAS. We integrated gene regulatory annotations to map non-coding risk variants to their regulated genes. Further, we performed a massively parallel reporter assay (MPRA) to identify causal variant(s) within a novel risk locus.
Results: We identified one novel GWS locus from the SPARK GWAS. The meta-analysis identified four significant loci, including an additional novel locus. We observed significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. The MPRA identified one variant at the novel locus with strong impacts on gene regulation (rs7001340), and expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and pre-natal brains.
Conclusions: By integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
107
References
3
Citations
NaN
KQI