Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons

2012 
Abstract Pro-inflammatory factors released by activated microglia may contribute to the progression of neurodegenerative diseases. As a natural phenolic acid, chlorogenic acid (CGA) has been shown to have anti-inflammatory properties. However, it is unclear whether CGA has the ability to mediate microglial activation. The present study investigated the role of CGA in lipopolysaccharide (LPS)-stimulated microglia. Our data demonstrated that CGA significantly suppressed NO production and TNF-α release in LPS-stimulated primary microglia. In addition, CGA decreased LPS-stimulated phosphorylation and degradation of inhibitory kappa B-alpha (IκBα), and prevented translocation of nuclear factor-kappaB (NF-κB). Furthermore, CGA prevented neurotoxicity caused by microglial activation and ultimately improved survival of dopaminergic (DA) neuron. Finally, in vivo data showed that CGA pretreatment attenuated LPS-induced IL-1β and TNF-α release in substantia nigra (SN). Our results suggested that the pretreatment of CGA significantly inhibits the microglial activation, and CGA may be neuroprotective for pro-inflammatory factor-mediated neurodegenerative disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    64
    Citations
    NaN
    KQI
    []