Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería

2012 
The fuzzy sets theory and the artificial neural networks are computational intelligence tools which are nowadays widely used in earthquake engineering. This paper develops a method and a computer program which use these computational intelligence tools in order to support the damage and safety evaluation of buildings after strong earthquakes. The model uses an artificial neural network with three layers and a Kohonen learning algorithm; it also uses fuzzy sets in order to manage subjective information such as linguistic qualification of the damage levels in buildings and a fuzzy rule base to support the decision making process. All these techniques are incorporated in the developed computer program. The input data is the subjective and incomplete information about the building state obtained by possibly non experienced evaluators in the field of the seismic performance of buildings. The proposed method is implemented in a tool especially useful in the emergency response phase, when it supports the decision making regarding the building habitability and reparability. In order to show its effectiveness, two examples are included for two different types of buildings.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []