Ultra-low depth sequencing of plasma cell DNA for the detection of copy number aberrations in multiple myeloma.

2020 
Cytogenetic abnormalities are powerful prognostic factors in multiple myeloma (MM) and are routinely analyzed by FISH on bone marrow (BM) plasma cells (PC). Although considered the gold standard, FISH experiments can be laborious and expensive. Therefore, array-CGH (aCGH) has been introduced as an alternative approach for detecting copy number aberrations (CNAs), reducing the number of FISH experiments per case and yielding genome-wide information. Currently, next generation sequencing (NGS) technologies offer new perspectives for the diagnostic workup of malignant disorders. In this study, we examined ultra-low depth whole genome sequencing (LDS) as a valid alternative for aCGH for the detection of CNAs in BM PCs in MM. To this end, BM aspirates obtained in a diagnostic setting from 20 MM cases were analyzed. CD138+ cell-sorted samples were subjected to FISH analysis. DNA was extracted for subsequent aCGH and LDS analysis. CNAs were detected by aCGH and LDS in all but one case. Importantly, all CNAs identified by parallel first generation aCGH analysis were also detected by LDS, along with six additional CNAs in five cases. One of these additional aberrations was in a region of prognostic importance in MM and was confirmed using FISH. However, risk stratification in these particular cases was unaffected. Thus, a perfectly concordant prognostication between array-CGH and LDS was observed. This validates LDS as a novel and cost-efficient tool for the detection of CNAs in MM. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []