Laser Tailored Multilayer Graphene Grids for Transparent Conductive Electrodes

2019 
Applications of graphene as transparent conductive electrodes (TCE) have been hindered either by high cost of single crystal graphene or balance between transparency and sheet resistance of polycrystalline graphene. In this work, we propose to fabricate multilayer graphene film grids (MGFG) to enhance transparency and keep low sheet resistance through IR laser tailoring. It is proved that the transparency of MGFG could be increased by 200 times while remaining its competitive sheet resistance as low as 340 Ω sq−1 through adjusting the tailoring grid, and the corresponding figures of merit (FoM) is increased from 0.1 to 3.6. As-obtained MGFG is demonstrated in generating controllable local thermal field and defogging efficiently. The strategy of laser-tailoring grid will greatly advance the applications of graphene for transparent electrodes in industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    3
    Citations
    NaN
    KQI
    []