Optical resonance near the edge of a photonic band gap (PBG): turning the effects of a PBG on/off using a resonant driving field

2019 
ABSTRACTWe studied the effects of a coherent monochromatic resonant laser field driving the transition of a two-level atom embedded in a photonic band gap (PBG) material on the emission dynamics of the atom. When the transition frequency of the atom lies outside a PBG and sufficiently far from the band edge that the emission dynamics of the atom is not normally affected by the gap, the dynamic stark splitting of the upper level of the atom into two dressed states by a sufficiently strong resonant driving field can bring the lower dressed state close enough to the band edge or even inside the gap so as to be affected by the gap, providing a switchable means of extending the novel effects of atom–photon interaction near the edge of a PBG for atomic transitions outside the gap and far from the band edge. The net effect is as if a sufficiently strong resonant field driving a transition of an atom embedded in a PBG actively shifts the PBG close enough to the transition so that the gap affects the emission dyna...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []