Enantioseparation of the constituents involved in the phenylalanine-tyrosine metabolic pathway by capillary electrophoresis tandem mass spectrometry

2016 
Abstract Catecholamines dopamine, norepinephrine, and epinephrine are well-known neurotransmitters playing different roles in the nervous and endocrine system. These compounds are biologically synthesized in the phenylalanine-tyrosine pathway which consists on the successive conversion of l -phenylalanine into l -tyrosine, l -3,4-dihydroxyphenylalanine (L-DOPA), dopamine, norepinephrine, and epinephrine. This work describes the development of an enantioselective CE-ESI–MS 2 methodology enabling, for the first time, the simultaneous enantioseparation of all the constituents involved in the Phe-Tyr metabolic pathway, since all these compounds except dopamine are chiral. The developed method was based on the use of a dual CDs system formed by 180 mM of methyl-β-CD and 40 mM of 2-hydroxypropyl-β-CD dissolved in 2 M formic acid (pH 1.2) and presented the advantage of avoiding the use of any time-consuming labelling procedure. LODs ranged from 40 to 150 nM and the unequivocal identification of the compounds investigated was achieved through their MS 2 spectra. The applicability of this methodology to the analysis of biological samples (rat plasma) was also demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    21
    Citations
    NaN
    KQI
    []