Rossby Wave Breaking in the Southern Hemisphere Wintertime Upper Troposphere

2003 
Abstract The characteristics of Rossby wave propagation and breaking in the Southern Hemisphere upper troposphere during winter are examined. Although the Southern Hemisphere subtropical jet is more zonally symmetric than that of the Northern Hemisphere, there are still significant zonal variations in the upper-tropospheric flow. In particular, the flow within a given sector (≈120° longitude) can generally be characterized into one of four different configurations: (i) a single jet, (ii) a “broken” subtropical jet, (iii) a polar jet at the upstream end of the subtropical jet, or (iv) a polar jet at the downstream end of the subtropical jet. Using “potential vorticity thinking” and barotropic wind shear arguments, it is argued that the characteristics of the Rossby wave propagation and breaking will differ between each flow configuration. Consistent with these arguments, examination of potential vorticity maps and contour advection calculations show differing wave-breaking characteristics. In particular, t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    40
    Citations
    NaN
    KQI
    []