Filling of chrysotile nanotubes with metals

2002 
Nanowires were produced by injection of molten Hg and Pb into chrysotile nanotubes. The breakdown of chrysotile and the surface tension of the molten metals are the limiting factors for the filling procedure. The thermal stability of chrysotile nanotubes was investigated by infrared spectrometry, thermogravimetry, differential thermal analysis, and x-ray diffraction analyses. For short-term thermal annealing (30 min) the tube morphology remains stable up to 700 °C. The high surface tension of both molten Pb and Hg (γ L V > 200 mN/m) requires external pressure for the melts to penetrate into the tubes. Filling of the tubes was achieved under high pressure and high temperature conditions compatible with the stability range for chrysotile determined in the annealing experiments. Transmission electron microscopy observations confirmed high filling yields for both metals. Almost all nanotubes were partially filled with lead. The length of continuous wires ranged from tens to hundreds of nanometers. Additional experiments with tin were not successful.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    17
    Citations
    NaN
    KQI
    []