Algorithmic cooling of nuclear spins using long-lived singlet order

2020 
: Algorithmic cooling methods manipulate an open quantum system in order to lower its temperature below that of the environment. We achieve significant cooling of an ensemble of nuclear spin-pair systems by exploiting the long-lived nuclear singlet state, which is an antisymmetric quantum superposition of the "up" and "down" Zeeman states. The effect is demonstrated by nuclear magnetic resonance experiments on a molecular system containing a coupled pair of near-equivalent 13C nuclei. The populations of the system are subjected to a repeating sequence of cyclic permutations separated by relaxation intervals. The long-lived nuclear singlet order is pumped well beyond the unitary limit. The pumped singlet order is converted into nuclear magnetization which is enhanced by 21% relative to its thermal equilibrium value.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    5
    Citations
    NaN
    KQI
    []