Silica nanoparticles for the oriented encapsulation of membrane proteins into artificial bilayer lipid membranes.

2015 
An artificial bilayer lipid membrane system is presented, featuring the oriented encapsulation of membrane proteins in a functionally active form. Nickel nitrilo-triacetic acid-functionalized silica nanoparticles, of a diameter of around 25 nm, are used to attach the proteins via a genetically engineered histidine tag in a uniform orientation. Subsequently, the proteins are reconstituted within a phospholipid bilayer, formed around the particles by in situ dialysis to form so-called proteo-lipobeads (PLBs). With a final size of about 50 nm, the PLBs can be employed for UV/vis spectroscopy studies, particularly of multiredox center proteins, because the effects of light scattering are negligible. As a proof of concept, we use cytochrome c oxidase (CcO) from P. denitrificans with the his tag genetically engineered to subunit I. In this orientation, the P side of CcO is directed to the outside and hence electron transfer can be initiated by reduced cytochrome c (cc). UV/vis measurements are used in order to ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    10
    Citations
    NaN
    KQI
    []