Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

2000 
A method is developed to retrieve surface ground temperature (T(sub g)) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing longwave radiation (CLR) is sensitive to upper level moisture (q(sub l)) over wet regions and (T(sub g)) over dry regions The clear sky window flux from 800 to 1200/cm (RadWn) is sensitive to low level moisture (q(sub t)) and T(sub g). Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub l) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in T(sub g), q(sub h) and q(sub l). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing Delta(T(sub g)) and broad layer Delta(q(sub l) from .500 hPa to surface and Delta(q(sub h)) from 200 to .300 hPa provides a good approximation to the full radiative transfer calculations. typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters. Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for Delta(T(sub g)) to about 20% for Delta(q(sub l)). Our initial application of the methodology employed an early CERES-TRMM data set (CLR and Radwn) to assess the quality of the GEOS2 data. The results showed that over the tropical and subtropical oceans GEOS2 is, in general, too wet in the upper troposphere (mean bias of 0.99 mm) and too dry in the lower troposphere (mean bias of -4.7 min). We note that these errors, as well as a cold bias in the T(sub g). have largely been corrected in the current version of GEOS-2 with the introduction of a land surface model, a moist turbulence scheme and the assimilation of SSM/I total precipitable water.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []