Stabilizationofsampled-datanonlinearsystemsvia backsteppingontheirEulerapproximatemodel ?

2006 
Two integrator backstepping designs are presented for digitally controlled continuous-time plants in special form. The controller designs are based on the Euler approximate discrete-time model of the plant and the obtained control algorithms are novel. The two control laws yield, respectively, semiglobal-practical stabilization and global asymptotic stabilization of the Euler model. Both designs achieve semiglobal-practical stabilization (in the sampling period that is regarded as a design parameter) of the closed loop sampled-data system. A simulation example illustrates that the obtained controllers may sometimes be superior to backstepping controllers based on the continuous-time plant model that are implemented digitally.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []