Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar

2021 
This study investigates the pyrolysis behavior and reaction kinetics of two different types of solid digestates from: (i) sewage sludge and (ii) a mixture of sewage sludge and lignocellulosic biomass—Typha latifolia plant. Thermogravimetric data in the temperature range 25–800 °C were analyzed using Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose kinetic methods, and the thermodynamic parameters (ΔH, ΔG, and ΔS) were also determined. Biochars were characterized using different chemical methods (FTIR, SEM–EDS, XRD, heavy metal, and nutrient analysis) and tested as soil enhancers using a germination test. Finally, their potential for biosorption of NH4+, PO43−, Cu2+, and Cd2+ ions was studied. Kinetic and thermodynamic parameters revealed a complex degradation mechanism of digestates, as they showed higher activation energies than undigested materials. Values for sewage sludge digestate were between 57 and 351 kJ/mol, and for digestate composed of sewage sludge and T. latifolia between 62 and 401 kJ/mol. Characterizations of biochars revealed high nutrient content and promising potential for further use. The advantage of biochar obtained from a digestate mixture of sewage sludge and lignocellulosic biomass is the lower content of heavy metals. Biosorption tests showed low biosorption capacity of digestate-derived biochars and their modifications for NH4+ and PO43− ions, but high biosorption capacity for Cu2+ and Cd2+ ions. Modification with KOH was more efficient than modification with HCl. The digestate-derived biochars exhibited excellent performance in germination tests, especially at concentrations between 6 and 10 wt.%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    103
    References
    1
    Citations
    NaN
    KQI
    []