Reducing the complexity of finite-temperature auxiliary-field quantum Monte Carlo

2021 
Abstract The auxiliary-field quantum Monte Carlo (AFMC) method is a powerful and widely used technique for ground-state and finite-temperature simulations of quantum many-body systems. We introduce several algorithmic improvements for finite-temperature AFMC calculations of dilute fermionic systems that reduce the computational complexity of most parts of the algorithm. This is principally achieved by reducing the number of single-particle states that contribute at each configuration of the auxiliary fields to a number that is of the order of the number of fermions. Our methods are applicable for both the canonical and grand-canonical ensembles. We demonstrate the reduced computational complexity of the methods for the homogeneous unitary Fermi gas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []