Quantitative proteomics identifies secreted diagnostic biomarkers as well as tumor-dependent prognostic targets for clear cell Renal Cell Carcinoma.

2021 
Clear cell Renal Cell Carcinoma (ccRCC) is the third most common and most malignant urological cancer, with a 5-year survival rate of 10% for patients with advanced tumors. Here, we identified 10,160 unique proteins by in-depth quantitative proteomics, of which 955 proteins were significantly regulated between tumor and normal adjacent tissues. We verified four putatively secreted biomarker candidates, namely PLOD2, FERMT3, SPARC and SIRPα, as highly expressed proteins that are not affected by intra- and intertumor heterogeneity. Moreover, SPARC displayed a significant increase in urine samples of ccRCC patients, making it a promising marker for the detection of the disease in body fluids. Furthermore, based on molecular expression profiles, we propose a biomarker panel for the robust classification of ccRCC tumors into two main clusters, which significantly differed in patient outcome with an almost three times higher risk of death for cluster 1 tumors compared to cluster 2 tumors. Moreover, among the most significant clustering proteins, 13 were targets of repurposed inhibitory FDA-approved drugs. Our rigorous proteomics approach identified promising diagnostic and tumor-discriminative biomarker candidates which can serve as therapeutic targets for the treatment of ccRCC. Implications: Our in-depth quantitative proteomics analysis of ccRCC tissues identifies the putatively secreted protein SPARC as a promising urine biomarker and reveals two molecular tumor phenotypes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    1
    Citations
    NaN
    KQI
    []