The SARS-CoV-2 Spike harbours a lipid binding pocket which modulates stability of the prefusion trimer

2020 
Large trimeric Spikes decorate SARS-CoV-2 and bind host cells via receptor binding domains (RBDs). We report a conformation in which the trimer is locked into a compact well-ordered form. This differs from previous structures where the RBD can flip up to recognise the receptor. In the locked form regions associated with fusion transitions are stabilised and the RBD harbours curved lipids. The acyl chains bind a hydrophobic pocket in one RBD whilst the polar headgroups attach to an adjacent RBD of the trimer. By functional analogy with enteroviral pocket factors loss of the lipid would destabilise the locked form facilitating receptor attachment, conversion to the postfusion state and virus infection. The nature of lipids available at the site of infection might affect the antigenicity/pathogenicity of released virus. These results reveal a potentially druggable pocket and suggest that the natural prefusion state occludes neutralising RBD epitopes, achieving conformational shielding from antibodies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    5
    Citations
    NaN
    KQI
    []