Near-infrared absorbing unsymmetrical Zn(II) phthalocyanine for dye-sensitized solar cells

2013 
Unsymmetrical Zn phthalocyanine consisting of six S-aryl groups at α-positions and a carboxy anchoring group at β-position has been designed and synthesized for dye-sensitized solar cells (DSCs) applications. The unsymmetrical phthalocyanine has been characterized by elemental, MALDI-MS, IR, 1H NMR, UV–Vis, fluorescence (steady-state & lifetime) and electrochemical (including spectroelectrochemical) methods. The Q-band absorption maxima of the unsymmetrical phthalocyanine was red-shifted due to the presence of S-aryl groups, which destabilizes the HOMO level consistent with electrochemical and in situ spectroelectrochemical studies. The redox processes are assigned to the macrocyclic ring-based electron transfer processes, the LUMO of the unsymmetrical phthalocyanines lies above the TiO2 conduction band, and the HOMO is well below the potential of the I−/I3− redox electrolyte. The experimental results are supported by DFT/TD-DFT studies. The new unsymmetrical phthalocyanines was tested in DSCs using I−/I3− redox electrolyte system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    20
    Citations
    NaN
    KQI
    []