Refinements for Free
2013
Formal verification of algorithms often requires a choice between definitions that are easy to reason about and definitions that are computationally efficient. One way to reconcile both consists in adopting a high-level view when proving correctness and then refining stepwise down to an efficient low-level implementation. Some refinement steps are interesting, in the sense that they improve the algorithms involved, while others only express a switch from data representations geared towards proofs to more efficient ones geared towards computations. We relieve the user of these tedious refinements by introducing a framework where correctness is established in a proof-oriented context and automatically transported to computation-oriented data structures. Our design is general enough to encompass a variety of mathematical objects, such as rational numbers, polynomials and matrices over refinable structures. Moreover, the rich formalism of the Coq proof assistant enables us to develop this within Coq, without having to maintain an external tool.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
45
Citations
NaN
KQI