Rational Construction of Strongly Coupled Metal–Metal Oxide–Graphene Nanostructure with Excellent Electrocatalytic Activity and Durability

2014 
The interaction within heterogeneous nanostructures can provide a great opportunity to radically enhance their electrocatalytic properties and increase their activity and durability. Here a rational, simple, and integrated strategy is reported to construct uniform and strongly coupled metal–metal oxide–graphene nanostructure as an electrocatalyst with high performance. We first simply synthesized the interacted SnO2–prGO (protected and reduced graphene oxide) hybrid with SnO2 nanoparticles (∼4 nm) selectively anchored on the oxygenated defects of rGO using an in situ redox and hydrolysis reaction. After the deposition of Pt, uniform Pt NPs are found to contact intimately and exclusively with the SnO2 phase in the SnO2–prGO hybrid. This constructed nanostructure (Pt-SnO2–prGO) exhibits significantly improved electrocatalytic activity (2.19-fold) and durability (2.08-fold) toward methanol oxidation over that of the state-of-the-art Pt/C catalyst. The detailed explanation of the strong coupling between SnO2 ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    51
    Citations
    NaN
    KQI
    []