Electrically conductive, polymer nanofibers fabricated by electrospinning and electroless copper plating

2017 
This paper reports the development of electrically conductive, polymer nanofibers fabricated by electrospinning and electroless copper plating. The electrospun nanofibers were made using a precursor consisting of styrene-isoprene-styrene (SIS) block copolymer and silver trifluoroacetate. For process development and materials characterization, the fibers were electrospun as a thin membrane on glass slides. After electrospinning, each sample was exposed to an argon plasma in order to stimulate the formation of Ag metal within the fibers. Using Ag as a catalyst, copper coatings were formed on the fibers by electroless plating. It was found that high quality copper could readily form on the polymer nanofibers, rendering the originally highly resistive nanofiber membranes electrically conductive while simultaneously optically translucent. To characterize the electrical behavior of the plated fibers under mechanical load, samples were electrospun on a solid, elastic SIS thick film, plasma treated, electroless plated and subjected to elongation. One sample maintained measurable resistances for elongations of up to 167% of its unstretched value.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    1
    Citations
    NaN
    KQI
    []