Network Design and Optimization for Multi-product, Multi-time, Multi-echelon Closed-loop Supply Chain under Uncertainty☆

2015 
Abstract This paper proposes the network design and optimization of a multi-product, multi-time, multi-echelon capacitated closed-loop supply chain in an uncertain environment. The uncertainty related to ill-known parameters like product demand, return volume, fraction of parts recovered for different product recovery processes, purchasing cost, transportation cost, inventory cost, processing, and set-up cost at facility centers is handled with fuzzy numbers. A fuzzy mixed-integer linear programming model is proposed to decide optimally the location and allocation of products/parts at each facility, number of products to be remanufactured, number of parts to be purchased from external suppliers and inventory level of products/parts in order to maximize the profit to the organization. The proposed solution methodology is able to generate a balanced solution between the feasibility degree and the degree of satisfaction of the decision maker. The proposed model has been tested with an illustrative example.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    24
    Citations
    NaN
    KQI
    []