When Recommender Systems Meet Fleet Management: Practical Study in Online Driver Repositioning System
2020
E-hailing platforms have become an important component of public transportation in recent years. The supply (online drivers) and demand (passenger requests) are intrinsically imbalanced because of the pattern of human behavior, especially in time and locations such as peak hours and train stations. Hence, how to balance supply and demand is one of the key problems to satisfy passengers and drivers and increase social welfare. As an intuitive and effective approach to address this problem, driver repositioning has been employed by some real-world e-hailing platforms. In this paper, we describe a novel framework of driver repositioning system, which meets various requirements in practical situations, including robust driver experience satisfaction and multi-driver collaboration. We introduce an effective and user-friendly driver interaction design called “driver repositioning task”. A novel modularized algorithm is developed to generate the repositioning tasks in real time. To our knowledge, this is the first industry-level application of driver repositioning. We evaluate the proposed method in real-world experiments, achieving a 2% improvement of driver income. Our framework has been fully deployed in the online system of DiDi Chuxing and serves millions of drivers on a daily basis.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
5
Citations
NaN
KQI