Doppler Characterization in Ultra Wideband BAN Channels During Breathing

2019 
Monitoring the physical parameters from devices inside the body, using ultra wideband (UWB) technology, enables the development of high bandwidth demanding applications in real time. The relative movement of the nodes deployed in the body, due to breathing, can give rise to a frequency shifting effect, increasing the fading level in the propagation channel during transmissions. In this article, therefore, we present a study of the frequency effects on the propagation channel derived from the relative movement between two nodes of a wireless body area network (WBAN), at least one of them placed inside the human body, caused by breathing. The study is performed on the basis of the Doppler spectrum characterization in terms of the shape fitting and frequency spread parameter derivation. Continuous wave (CW) signals have been used to cover the UWB range at four selected frequencies: 3.1, 4.8, 6, and 8.5 GHz, and a liquid phantom has been employed for emulating the dielectric properties of the high water content tissues at the considered UWB frequencies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []